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Abstract. The rate of electron tunnelling from a quantum well formed in a heterostructure
and subjected to perpendicular dc electric and quantizing magnetic fields has been calculated. It
has been shown that at a fixed value of magnetic field there exists a threshold value of electric
field below which the tunnelling from the well is impossible. If the electric field exceeds the
threshold value, the tunnelling rate increases with increasing electric field, but the dependence
of the tunnelling rate on the electric field is not smooth because of new Landau levels being
engaged, to which electrons can go over. It is exciting that the tunnelling rate in crossed electric
and magnetic fields can be significantly higher than the rate in the presence of just the electric
field. A physical explanation of this effect is given.

1. Introduction

Different quantum-mechanical phenomena exhibited by high-quality semiconductor
heterostructures are currently of great interest. In particular, electron tunnelling through a
rectangular barrier between two semiconductors in the presence of a magnetic field has been
considered theoretically in several papers (see, for example, [1–3] and references therein).
Tunnelling in single-barrier heterostructures from a quantum well into magnetoquantized
interface states (these states correspond to classical electron skipping orbits) was observed
in [4]. Resonant tunnelling in double-barrier heterostructures under a magnetic field applied
in the plane of the tunnel barriers was investigated theoretically in [5, 6] and experimentally
in [7]. The authors of [7] observed tunnelling into interfacial Landau levels of two distinct
types: ‘traversing’ orbits and ‘skipping’ states. However, electron tunnelling from a
quantum well in crossed dc electric and magnetic fields in the case where a barrier is absent
and interfacial Landau levels are not important has not been studied either theoretically or
experimentally.

The purpose of our paper is the theoretical investigation of electron tunnelling from a
quantum well formed in a heterostructure and subjected to crossed dc electric and magnetic
fields. The electric field is supposed to be perpendicular to the well boundaries, while the
magnetic field is perpendicular to the electric one. The magnetic field is assumed to be
so strong that Landau levels exist outside the well. In this case, the effective potential
acting upon an electron can have two minima (see figure 1). In the absence of electron
scattering, if the initial state of the electron is confined to being in the well, transitions from
the well to the second minimum of the potential and back occur, and the probability of
detection of the electron in the well oscillates. But electron scattering which always occurs
in semiconductor heterostructures invalidates this picture. If the scattering time,τ , is much
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11158 V Ya Demikhovskii and G A Vugalter

Figure 1. The effective one-dimensional potentialUeff (y) in which the electron moves.̃ε0 is
the energy level of the ground quasistationary state in the well. The unlabelled horizontal lines
are the Landau levelsεn.

less than the inverse rate of electron tunnelling from the well,w−1, but much longer than
the characteristic time of the electron motion in the classically forbidden region,τf ,

τf � τ � w−1 (1)

the return of the electron into the well is not inevitable and it is appropriate to consider
tunnelling from the quantum well into Landau levels and not to consider the reverse process.
Due to electron scattering outside the well, a dissipative current arises and electrons released
from the well go away from the region of the well. On the other hand, due to the left-
hand inequality in (1) we can neglect the electron scattering during the electron motion
in the classically forbidden region and describe the electron behaviour by a Schrödinger
equation. We suppose condition (1) to hold. The more exotic situation where the inelastic
scattering time is much longer than the time required for tunnelling through a thin barrier
between quantum Hall systems is discussed in [3]. It is shown in this paper that electrons
can tunnel back and forth through the barrier and give rise to an oscillating current in the
absence of external drives. It should be noticed that it was only due to electron scattering
that the current flowing perpendicular to the well boundaries existed and was measured in
experimental work [4, 7].

The left-hand inequality in (1) is satisfied for sufficiently pure samples at low temp-
eratures. Moreover, we assume the heterostructure temperature to be so low that all of
the electrons in the well occupy the lowest energy level and are described by the Fermi
distribution function.

By applying the method used in [8], an analytical expression for the rate of electron
tunnelling from the quantum well into Landau levels outside the well has been derived. In
contrast to the situation considered in [4], in our case electrons tunnel not into interface
states, but into bulk Landau levels. The dependence of the tunnelling rate on electric and
magnetic fields has been investigated. It has been shown that at a fixed value of magnetic
field there exists a threshold value of electric field below which the tunnelling from the well
is impossible. If the electric field exceeds the threshold value, the tunnelling rate increases
with increasing electric field, but the increase of the tunnelling rate is not smooth: whenever
a transition into a new Landau level becomes possible, the derivative of the tunnelling rate
with respect to the electric field tends to infinity.

We compare the tunnelling rate in crossed electric and magnetic fields with the tunnelling
rate in the presence of just the electric field and show that the rate in the first case is more
than the rate in the second one, if the electric field is comparatively close to a threshold
value. The ratio of these two rates can be essentially greater than unity. We give a physical
explanation of this effect.

In section 2 we formulate the problem and describe briefly quasistationary states of an
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electron in the system that we consider. In section 3 we derive an analytical expression for
the tunnelling rate. In section 4 we discuss the formula obtained and give numerical results.

2. Formulation of the problem; electron quasistationary states

Let us consider a rectangular quantum well formed in a heterostructure—for example, in
the structure AlxGa1−xAs–GaAs–AlxGa1−xAs. The well is situated between the planes
y = ±a/2 and subjected to crossed dc electric(E) and magnetic(H) fields. The fields are
directed along they- andz-axes, respectively. Let electrons occupy the ground state in the
quantum well att = 0. This state may be quasistationary due to the presence of the crossed
fields, and we wish to establish what characteristic time is required for the two-dimensional
degenerate electron gas to leave the well.

We do not take into account the electron spin because its projection on the magnetic
field direction is conserved during the tunnelling process and because the additional electron
energy connected with the spin is the same in the well and outside it.

We start from the stationary Schrödinger equation for an electron:[
1

2m

(
p̂− e

c
A

)2

− eEy + U(y)
]
ψ(r) = Eψ(r) (2)

wheree andm are the electron charge and effective mass,c is the velocity of light,h̄ is the
Planck constant andU(y) is the potential energy of the well which isU0 deep anda wide
(i.e. U(y) = −U0 if |y| < a/2, U(y) = 0 if |y| > a/2). We neglect the dependence of the
effective mass on the coordinatey. It is convenient to use the magnetic vector potential
in the Landau gaugeA = (−Hy, 0, 0). In this case the Hamiltonian in equation (2) is
independent ofx, z and we can seek solutions of equation (2) in the form

ψ(r) = 1

2πh̄
exp

(
i

h̄
(pxx + pzz)

)
ϕ(y) (3)

where px and pz are the projection of the electron momentum on thex- and z-axes,
respectively. Substituting equation (3) into equation (2), we obtain a one-dimensional
equation: [

p̂y

2m
+ mω

2
c

2
(y − yc)2+ U(y)

]
ϕ =

(
E − p2

z

2m
− vdpx + mv

2
d

2

)
ϕ. (4)

Here

ωc = |e|H
mc

vd = c EH yc = 1

mωc
(px −mvd) (5)

are the cyclotron frequency, the electron drift velocity in the crossed electric and magnetic
fields, and they-coordinate of the centre of the classical electron Larmor orbit, respectively.

If one neglects the influence of the well potential on the electron motion outside the
well, equation (4) yields Landau levels

En,px,pz = h̄ωc
(
n+ 1

2

)
+ p2

z

2m
+ vdpx − mv

2
d

2
(n = 0, 1, 2, . . .) (6a)

ϕn,px = ψn(y − yc) (n = 0, 1, 2, . . .) (6b)

where

ψn(y) = 1√
2nn!
√
πlH

exp

(
− y

2

2l2H

)
Hn

(
y

lH

)
(n = 0, 1, 2, . . .) (6c)
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are the wave functions of the harmonic oscillator [9],Hn are Hermite polynomials and
lH = (ch̄/|e|H)1/2 is the magnetic length.

Let us designate the energy of the ground state in the well in the absence of electric
and magnetic fields as

E0 = − h̄2κ2

2m
(7)

where 1/κ is the scale of the wave-function localization outside the well. If in the well
region the variation of the potential1

2mω
2
c (y − yc)2 within the space scalea+ 2/κ is small

compared to|E0|, i.e.

|px −mvd | 6 pF +mvd � h̄κ

2(2+ κa)(κlH )
2 (8)

(pF is the Fermi momentum), one can replace the harmonic oscillator potential in
equation (4) by its value aty = 0. After that it is obvious that there exists a bound
ground state in the well. The energy of this state is

Ẽ0,px ,pz = E0+ (px −mvd)
2

2m
+ p2

z

2m
+ vdpx − mv

2
d

2
. (9a)

This expression can be transformed to the expected formula

Ẽ0,px ,pz = E0+ p
2
x + p2

z

2m
. (9b)

The wave function corresponding to energy(9a) is described approximately by the same
expression as in the absence of electric and magnetic fields, namely,

ϕ̃0(y) =


C0 cos(ky) |y| < a/2

C0 cos

(
1

2
ka

)
exp

[
−κ
(
|y| − 1

2
a

)]
|y| > a/2

(10)

where

C0 =
√
κ√

1+ 1
2κa

k = 1

h̄

√
2m(U0− |E0|) κ = 1

h̄

√
2m|E0|. (11)

In the general case, wave function (10) describes not a stationary state but a quasistationary
one. The tunnelling rate which we would like to calculate determines the lifetime (averaged
over the Fermi distribution) of electrons in this state.

Below we shall use the energies

εn ≡ En,px,pz −
p2
z

2m
− vdpx + mv

2
d

2
= h̄ωc

(
n+ 1

2

)
(12a)

ε̃0 ≡ Ẽ0,px ,pz −
p2
z

2m
− vdpx + mv

2
d

2
= E0+ (px −mvd)

2

2m
(12b)

instead of energies(6a), (9a). The electron energy levels and the effective one-dimensional
potential

Ueff (y) = 1

2
mω2

c (y − yc)2+ U(y)
in which the electron moves are shown in figure 1.
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3. The tunnelling rate

Let us consider the process of tunnelling from the well. The wave functionψ(r, t) of an
electron obeys the Schrödinger equation

i h̄
∂ψ

∂t
=
[

1

2m

(
p̂− e

c
A

)2

− eEy + U(y)
]
ψ (13a)

with the initial condition

ψ(r, 0) = 1

2πh̄
exp

(
i

h̄
(pxx + pzz)

)
ϕ̃0(y) (13b)

whereϕ̃0(y) is the wave function of the ground state in the well (see equation (10)). The
problem can be reduced to a spatially one-dimensional case by making the substitution

ψ(r, t) = 1

2πh̄
exp

[
i

h̄
(pxx + pzz)− i

h̄

(
p2
z

2m
+ vdpx − mv

2
d

2

)
t

]
ϕ(y, t). (14)

The equation for the functionϕ(y, t) reads

i h̄
∂ϕ

∂t
=
[
p̂2
y

2m
+ 1

2
mω2

c (y − yc)2+ U(y)
]
ϕ. (15)

Substitution (14) enables us to eliminate the term(1/2m)p2
z + vdpx − 1

2mv
2
d from expres-

sions(6a), (9a) and to arrive at energies(12a), (12b). As is clear from figure 1, at fixed
values ofpx, pz the electron can leave the well if the energy level of the initial state
coincides with one of the Landau levels, i.e.

E0+ 1

2m
(px −mvd)2 = h̄ωc

(
n+ 1

2

)
. (16)

From equation (16) we find

|px −mvd | =
√

2m

(
|E0| + h̄ωc

(
n+ 1

2

))
. (17)

According to inequality (8), the left-hand side of equation (17) should be much less than√
2m|E0|3[h̄ωc(1+ 1

2κa)]
−1. Therefore, in the approximation of a comparatively deep well

(or comparatively weak fields), the electron can leave the well if the condition( |E0|
h̄ωc

)3/2 1

2(1+ 1
2κa)

�
√
|E0|
h̄ωc
+ n+ 1

2
(18a)

holds. This is possible if, at least,

|E0|
h̄ωc
= 1

2
(κlH )

2� 1. (18b)

This inequality is necessary but may be insufficient to ensure that condition(18a) is satisfied.
If the number of the Landau level to which the tunnelling is proceeding is not very large
(namely,n . |E0|/h̄ωc), condition(18a) can be replaced by

|E0|
h̄ωc
� 2

(
1+ 1

2
κa

)
. (18c)

Following the method described in [8], let us rewrite equation (15) in the form

i h̄
∂ϕ

∂t
−
[
p̂2
y

2m
+ 1

2
mω2

c (y − yc)2
]
ϕ = U(y)ϕ. (19)
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Then let us introduce the Green functionG(y, y ′, t−t ′), which is the solution of the equation

i h̄
∂G

∂t
−
[
p̂2
y

2m
+ 1

2
mω2

c (y − yc)2
]
G = i h̄δ(t − t ′)δ(y − y ′) (20)

and which is identically equal to zero fort < t ′. It can be shown that

G(y, y ′, t − t ′) = 2(t − t ′)
∞∑
n=0

ψn(y − yc)ψn(y ′ − yc)e−iωc(n+1/2)(t−t ′). (21)

Here2(t − t ′) is a step function (2(t − t ′) = 1 if t > t ′ and2(t − t ′) = 0 if t < t ′). The
Green function enables us to rewrite equation (19) and its initial condition in the integral
form

ϕ(y, t) =
∫ ∞
−∞

G(y, y ′, t)ϕ̃0(y
′) dy ′ + 1

i h̄

∫ ∞
−∞

dy ′
∫ t

0
dt ′ G(y, y ′, t − t ′)U(y ′)ϕ(y ′, t ′).

(22)

The first term in the right-hand side of equation (22) describes the transitions of the electron
from the initial state to Landau levels when the quantum well is absent. The probabilities
of these transitions do not depend on time (in contrast to the probabilities described by the
second term in the right-hand side of equation (22)). Our estimates show that for sufficiently
large t (t � h̄/|E0|) we can neglect the contribution of the first term in the right-hand side
of equation (22) in comparison with the contribution of the second term. Below we shall
focus on investigation of the latter.

If the time t that we consider is significantly less than the inverse tunnelling ratew−1,
i.e.

h̄/|E0| � t � w−1 (23)

(w will be given below), we can substitute the unperturbed wave function of the initial state

ϕ(y ′, t ′) ' ϕ̃0(y
′) exp

(
− i

h̄
ε̃0t
′
)

into the right-hand side of equation (22). Using the Green function (21), we find

ϕ(y, t) ' U0

h̄

∞∑
n=0

ψn(y − yc)e−iωc(n+1/2)t ei(ωc(n+1/2)−ε̃0/h̄)t − 1

ωc(n+ 1
2)− ε̃0/h̄

×
∫ a/2

−a/2
ϕ̃0(y

′)ψn(y ′ − yc) dy ′. (24)

The integral contained in equation (24) can be solved analytically if the well is not
wide, namely, if the well width satisfies the conditions

a < lH (25a)

n
a

2
� |yc|. (25b)

Taking into account expressions (5), (17), we rewrite inequality(25b) in the form

n

2
√

2

a

lH
�
√
|E0|
h̄ωc
+ n+ 1

2
. (25c)
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Under conditions(25a), (25c) we can approximate the functionψn(y ′ −yc) in equation (24)
by ψn(−yc) exp(ycy ′/l2H ) and carry out the integration overy ′. As a result, we have

ϕ(y, t) '
∞∑
n=0

ψn(y − yc)e−iωc(n+1/2)t

{
U0

h̄

ei(ωc(n+1/2)−ε̃0/h̄)t − 1

ωc(n+ 1
2)− ε̃0/h̄

×
√

κ

1+ 1
2κa

ψn(−yc)
[

sin(k + iyc/ l2H )a/2

k + iyc/ l2H
+ sin(k − iyc/ l2H )a/2

k − iyc/ l2H

]}
. (26)

The expression in the braces is simply the probability amplitude (let us designate it asan(t))
of the electron transition to thenth Landau level during the timet . In accordance with the
transcendental equation governing the electron spectrum in the quantum well, the following
relation holds:

U0

h̄

[
sin(k + iyc/ l2H )a/2

k + iyc/ l2H
+ sin(k − iyc/ l2H )a/2

k − iyc/ l2H

]

=
√

2

m

√
(U0− |E0|)U0

U0− |E0| + (1/2m)(px −mvd)2

×
[√
|E0| cosh(px −mvd) a

2h̄
+ px −mvd√

2m
sinh(px −mvd) a

2h̄

]
. (27)

Hence, the probability of the electron transition from the well to thenth Landau level
occurring during the timet equals

|an(t)|2 = 2κ(U0− |E0|)U0|E0|
m(1+ 1

2κa)(U0− |E0| + (1/2m)(px −mvd)2)2
[
ψn

(
mvd − px
mωc

)]2

×
[

cosh(px −mvd) a
2h̄
+ px −mvd√

2m|E0|
sinh(px −mvd) a

2h̄

]2

× 4 sin2(ωc(n+ 1
2)− ε̃0/h̄)t/2

(ωc(n+ 1
2)− ε̃0/h̄)2

. (28)

Now we can calculate the numberN(t) of electrons that have left the well during the
time t . As mentioned above, we supposed the heterostructure temperature to be sufficiently

Figure 2. The parabolasε = (1/2m)(px −mvd)2 for mvd = 0 (curve 1) andmvd > pF (curve
2), and horizontal linesε = |E0| + h̄ωc(n + 1

2), n = 0, 1, 2, . . . (curves 3), in thepxε-plane.
When depicting curve 1, we took into account that−|E0| + (1/2m)p2

F < 0.
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low that we could assume the electron distribution functionf (px, pz) at t = 0 to be the
two-dimensional Fermi function, i.e.f (px, pz) = 2(pF −

√
p2
x + p2

z ) where2 is a step
function. In this case

N(t) =
∫ ∫

S dpx dpz
(2πh̄)2

f (px, pz)

∞∑
n=0

|an(t)|2

= Sκ(U0− |E0|)U0|E0|
πh̄2m(1+ 1

2κa)

∫ pF

−pF
dpx

√
p2
F − p2

x

×
∞∑
n=0

1

(U0− |E0| + (1/2m)(px −mvd)2)2
[
ψn

(
mvd − px
mωc

)]2

×
[

cosh(px −mvd) a
2h̄
+ px −mvd√

2m|E0|
sinh(px −mvd) a

2h̄

]2

×
{

4 sin2(ωc(n+ 1
2)+ |E0|/h̄− (px −mvd)2/2mh̄)t/2

π(ωc(n+ 1
2)+ |E0|/h̄− (px −mvd)2/2mh̄)2

}
. (29)

Here S is the area of the heterostructure in thex–z plane. As is well known [9], for
sufficiently larget the function sin2(αt)/πα2 can be considered astδ(α) whereδ(α) is a
delta function. In our case, for larget ,

t � h̄/
√
h̄ωc|E0| h̄/

√
εF |E0| (30)

whereεF = p2
F /2m is the Fermi energy, we can replace the expression in the braces (see

equation (29)) by

tδ

[
1

2h̄

(
h̄ωc

(
n+ 1

2

)
+ |E0| − 1

2m
(px −mvd)2

)]
.

After that the integration overpx can be easily carried out. Due to the delta function, only
the points of intersection of the parabolaε = (1/2m)(px − mvd)2 and the horizontal lines
ε = |E0| + h̄ωc(n + 1

2), n = 0, 1, 2, . . . (see figure 2), contribute to the integral (if these
points of intersection exist in the interval−pF < px < pF ). Figure 2 shows that the points
of intersection are situated to the left of the pointpx = mvd . It should be noticed that the
number of electrons that have left the well during the timet is proportional to this time.
Therefore we can introduce the electron currentJ from the well, equal to the number of
electrons that have left per unit of time, i.e.J = N(t)/t . We do not give an expression for
J , but at once go over to the tunnelling rate defined asw = J/N0. Here

N0 =
∫ ∫

S dpx dpz
(2πh̄)2

f (px, pz) = Sp2
F

4πh̄2

is the initial number of electrons in the quantum well. As follows from equations (29) and
(6c),

w = 8(U0− |E0|)U0|E0|3/2
(1+ 1

2κa)h̄ε
1/2
F

nmax∑
nmin

√
1− (mvd/pF − (h̄/pF lH )

√
2|E0|/h̄ωc + 2n+ 1)2√

2|E0|/h̄ωc + 2n+ 1 (U0+ h̄ωc(n+ 1
2))

2

× 1

2nn!
√
π

e−(2|E0|/h̄ωc+2n+1)H 2
n

(√
2
|E0|
h̄ωc
+ 2n+ 1

)
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×
[

cosh

(
κa

2

√
1+ 2n+ 1

κ2l2H

)
+
√

1+ 2n+ 1

κ2l2H
sinh

(
κa

2

√
1+ 2n+ 1

κ2l2H

)]2

.

(31)

Herenmax is the integral part of the number

Nmax = 1

h̄ωc

[
1

2m
(pF +mvd)2− |E0| − 1

2
h̄ωc

]
(32a)

andnmin is the integral part of the number

Nmin = 1

h̄ωc

[
1

2m
(−pF +mvd)2− |E0| − 1

2
h̄ωc

]
+ 1 (32b)

if Nmin > 1, andnmin = 0 if Nmin < 1. If Nmax < 0 it is impossible for there to be an
electron current from the well and the tunnelling rate is equal to zero because the energies
of electrons in the well are less than the energies of electrons outside the well.

We emphasize that equation (31) is valid if

w �
√
h̄ωc|E0|/h̄

√
εF |E0|/h̄ (32c)

(see inequalities (23), (30)) andnmax satisfies condition(25c). The restriction on the quantity
nmax means that, at a fixed magnetic field, formula (31) describes the ionization rate in an
interval of E , bounded above.

4. Discussion and numerical results

Let us analyse equations (31) and (32). As we have mentioned, the electron current from
the well (and the tunnelling rate, too) is not equal to zero ifNmax > 0, i.e. the inequality

E > Eth ≡ 1

mc
H
(√

2m

(
|E0| + 1

2
h̄ωc

)
− pF

)
(33)

is satisfied. Thus, if at a fixed magnetic field the value of the electric field is less than the
threshold valueEth, tunnelling from the well is impossible. From condition (33) we can also
conclude that at a fixed value of the electric field, tunnelling from the well is impossible if
the magnetic field exceeds some valueHth. Taking into account inequality(18b), we can
write, approximately,

Hth ' mc√
2m|E0| − pF

E . (34)

Let the electric field increase and the magnetic field be fixed. Every time the electric
field exceeds the value

En = 1

mc
H
(√

2m

(
|E0| + h̄ωc

(
n+ 1

2

))
− pF

)
n = 0, 1, 2, . . . (35)

(obviously,E0 = Eth), the transition to thenth Landau level becomes possible (in addition
to the transitions to the Landau levels with previous numbers lower thann for E < En). As
follows from equation (31), the derivative of the tunnelling rate with respect toE equals
infinity at E = En + 0. Similarly, when the electric field exceeds the value

Ẽn = 1

mc
H
(√

2m

(
|E0| + h̄ωc

(
n+ 1

2

))
+ pF

)
n = 0, 1, 2, . . . (36)
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the transition to thenth Landau level becomes impossible, and the quantity dw/dE equals
minus infinity atE = Ẽn − 0. However, for typical parameters of the heterostructure (see
below) the quantities̃En (n = 0, 1, 2, . . .) are large and do not belong to the interval ofE
for which formula (31) is applicable.

Our consideration is valid under condition(18b). If only Landau levels labelled with
small numbers are involved in the tunnelling process (i.e.nmax � |E0|/h̄ωc), equation (31)
can be simplified. As a result, we have

w ' 4
√

2(U0− |E0|)|E0|
√
h̄ωc

(1+ 1
2κa)h̄U0

√
εF

eκa

√
1−

(
mvd − h̄κ

pF

)2

×
nmax∑
nmin

1

2nn!
√
π

e−(2|E0|/h̄ωc+2n+1)H 2
n

(√
2
|E0|
h̄ωc
+ 2n+ 1

)
. (37)

It is interesting to compare the tunnelling rate found above with that in the absence of
a magnetic field. According to [8],

w(H = 0) ' 2(U0− |E0|)|E0|
(1+ 1

2κa)h̄U0
exp

(
κa − 4|E0|κ

3|e|E
)
. (38)

Hence, the ratio of the tunnelling rates in the presence and in the absence of a magnetic
field is

w

w(H = 0)
'

4U2
0

√
|E0|

√
εF

exp

(
4|E0|κ
3|e|E − κa

)

×
nmax∑
nmin

{√√√√1−
(
mvd

pF
− h̄

pF lH

√
2
|E0|
h̄ωc
+ 2n+ 1

)2

×
[√

2
|E0|
h̄ωc
+ 2n+ 1

(
U0+ h̄ωc

(
n+ 1

2

))2]−1}

× 1

2nn!
√
π

e−(2|E0|/h̄ωc+2n+1)H 2
n

(√
2
|E0|
h̄ωc
+ 2n+ 1

)

×
[

cosh

(
κa

2

√
1+ 2n+ 1

κ2l2H

)
+
√

1+ 2n+ 1

κ2l2H
sinh

(
κa

2

√
1+ 2n+ 1

κ2l2H

)]2

.

(39)

The dependence of the tunnelling rate on the electric field at two fixed values of the
magnetic field is plotted in figure 3. We have chosen the heterostructure parameters as
follows: U0 = 0.3 eV,a = 42.3 Å, m = 0.07m0 (m0 is the free-electron mass). In this case
the energy of the ground state in the well isE0 = −0.2 eV. We suppose the sheet density
of electrons in the well to beN0/S = 1012 cm−2. As one can see, the stronger the electric
field, the higher the tunnelling rate. But the dependencew(E) is not smooth. As we have
mentioned, the derivative ofw with respect toE tends to infinity at the pointsE = En (see
equation (35)).

In accordance with inequality (1), the numerical results represented in figure 3 are valid
if τ � 10−5 s for H = 80 kOe and ifτ � 10−8 s for H = 100 kOe. These inequalities
are satisfied for real heterostructures.

The dependence of ratio (39) on the electric field is depicted in figure 4. The hetero-
structure parameters are the same as in figure 3. Figure 4 shows that the ratiow/w(H = 0)
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Figure 3. The dependence of the tunnelling rate on the electric field. The heterostructure
parameters are as follows:U0 = 0.3 eV, a = 42.3 Å, m = 0.07m0 (m0 is the free-electron
mass) and the electron sheet density in the well is 1012 cm−2. The magnetic field equals
80 kOe (a) and 100 kOe (b).

is a nonmonotonic function of the electric field. On the whole, the ratio decreases due to a
strong exponential dependence ofw(H = 0) onE . But near the pointsE = En (see equation
(35)) where the tunnelling rate in the presence of a magnetic field is a sharply increasing
function of the electric field, the ratiow/w(H = 0) increases. Figure 4 also shows that the
ratio w/w(H = 0) can markedly exceed unity. We interpret this fact as follows. In the
absence of a magnetic field an electron tunnels from the well through a triangular barrier
the height of which is|E0| and the width of which is determined by the electric field and
equalsb1 = |E0|/|e|E . In the presence of a magnetic field the electron tunnels through an
approximately triangular barrier of the same height and of the widthb2 determined by the
forcemω2

c |yc|. If the electric field is just a little larger than the threshold value determined
by equation (33), only the tunnelling process to the lowest Landau level is possible. In this
case, we have

b2

b1
' 1− 1√

2m(|E0| + 1
2h̄ωc)

(
pF − |e|(E − Eth)

ωc

)
. (40)
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Figure 4. The ratiow/w(H = 0) versus the electric field for two values of magnetic field
(H = 80 kOe (a),H = 100 kOe (b)). The heterostructure parameters are the same as in
figure 3.

One can see that the barrier width in the presence of a magnetic field is smaller than that
in the case where the magnetic field is absent. The ratio of the barrier transparencies in the
presence and in the absence of a magnetic field is an exponential function of the quantity

4|E0|κ
3|e|E

(
1− b2

b1

)
' 4|E0|κ

3|e|E
1√

2m(|E0| + 1
2h̄ωc)

(
pF − |e|(E − Eth)

ωc

)
. (41)

This quantity is positive and decreases with the increase of the electric field. Hence the
ratio of the barrier transparencies in the presence and in the absence of a magnetic field
is much larger than unity and decreases with the increase of the electric field. We can
state the same for the tunnelling into other Landau levels labelled with comparatively small
numbers, which occurs at larger electric fields. Since the behaviour of the tunnelling rate,
on the whole, is determined by the barrier transparency, for comparatively weak electric
fields the ratiow/w(H = 0) is much greater than unity and decreases, on the whole, with
the increase of the electric field.
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5. Conclusions

We have investigated electron tunnelling from a rectangular quantum well placed in crossed
dc electric and magnetic fields. Electrons are supposed to experience scattering (see
inequality (1)), due to which it is appropriate to speak about the tunnelling from the well into
bulk Landau levels. We have shown that at a fixed value of the magnetic field there exists
a threshold value of the electric field below which tunnelling from the well is impossible.
We can also say that at a fixed value of the electric field there exists a threshold value of
the magnetic field above which the tunnelling is impossible.

At a fixed value of the magnetic field the dependence of the tunnelling rate on the
electric field is an increasing function. This dependence is not smooth because of new
Landau levels becoming engaged, to which electrons can go over from the well.

The ratio of the tunnelling rates in two cases, namely, in crossed electric and magnetic
fields and in the presence of just the electric field, decreases, on the whole, with the increase
of the electric field at a fixed magnetic field. This ratio significantly exceeds unity if the
electric field is comparatively weak because in the two cases an electron tunnels through
barriers of the same height, but the width of the barrier in the presence of a magnetic field
is less than that in the absence of magnetic fields.

Numerical estimates of the tunnelling rate are given.
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